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PREFACE

The 10-year simulation analyzed in this report was produced under Atmo-
spheric Model Intercomparison Project (AMIP) by Dr. W. K.-M. Lau and his
colleagues. The EOS-DIS funding by NASA Headquarters for studies of global hy-
drological process and climate enabled the participation of the primary author, JK,

to carry out the analysis.
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I. Introduction

The Climate and Radiation Branch of Goddard Laboratory for Atmospheres
(GLA) participated in the Atmospheric Model Intercomparison Project (AMIP)
sponsored by the Department of Energy. Under this project, we produced a 10-
year (1979 - 1988) integration with the GLA General Circulation Model (GCM).
We present the first momentum fields (time mean averages) of major circulation
variables and also hydrological variables including precipitation, evaporation, and
soil moisture. A comparison of the model simulated radiative flux with those of
the Earth Radiation Budget Experiment (ERBE) observation for the period 1985
to 1988 is also included.

The aim of this technical memorandum is to document the key features of the
GCM simulations and to compare them whenever possible with the observed (or
analyzed) atmosphere. Our goals are i) to produce a benchmark documentation of
the GLA GCM for the AMIP intercomparison and future model improvements, i)
to examine systematic errors between the simulated and the observed circulation,
precipitation, and hydrologic cycle, ii2) to examine the interannual variability of
the simulated atmosphere and compare it with observation, and iv) to examine the
ability of the model to capture the major climate anomalies in response to an event

such as El Nino.

II. Description of the AMIP Run

The current version of GLA GCM has evolved from the earlier 9-layer Goddard
Laboratory for Atmospheric Sciences (GLAS) GCM (Kalnay et al., 1983). Although
we have made several changes in the GCM, we continue to use the 4° latitude and
5° longitude resolution for climate studies. The fortuitous benefit of this is that
the model improvements reflected in our results are not related to better horizontal
resolution. Since it is difficult to describe the model in this memorandum, we give
reference to the papers that discuss the various parameterizations in the model in
Table 1. This version of the GLA GCM has 17 layers, together with a number
of new physical parameterizations (see Table 1). The 10-year integration period is
from January 1/00 UTC, 1979 to January 1/00 UTC, 1989.



Table |I. Particulars of the

17-layer GCM

No. ITEM DESCRIPTION REFERENCE

1. Horizontal Resolution 4°1at. x 5°long. Kalnay ¢t al,, (1983)

2. Vertical Resolution 17 o-Layers Fox-Rabinovitz ¢t al,, (1991)
3. Longwave Radiation Modified HV Harshvardhan ¢t al.,, (1987)

10.
11.

a) Water-vapor & CO»
absorption

b) Ozone absorption

Shortwave Radiation

a) Ozone absorption,
Water-vapor absorption,
Rayleigh Scattering

b) Aerosol absorption and
Scattering

Turbulence and PBL

Biosphere

Non-Precipitating

Cumulus Clouds

Moist-Convection

Large-scale Precip.

Conv. & Large-scale
Rain-evaporation

Radiation Package

An adaptation of
Chou & Chou ¢t al,

Modified Rodgers
Slightly Modified HV
Radiation Package
Slightly Modified

Lacis and Hansen

Sud and Walker using
Pinker and Laszlo (1992)
Mellor-Yamada 2.5

SiB (Simple Biosphere)

Relative Humidity
Dependent Fractional
Clouds

Detraining Anvils

An adaptation of
Arakawa-Schubert

Fractional Cover

Kessler (1969) with
Ruprecht and Gray (19
76) Cloud Fractions.

Chou (1984)
Chou ¢t al,, (1983)

Rodger (1968) and
Rosenfield et al., (1987)

Harshvardhan et al.,, (1987)

Lacis and Hansen (1974)

Formulated by
Harshvardhan* in 1991

Helfand and Labraga, (1988)
Sellers ¢t al,, (1986) and
Sud et al., (1990)

Xue et al., (1991)

Sud and Walker (1992)
Slingo (1987) adaptation
Sud and Walker (1992)

Sud gt al., (1991) with
Tokioka et al., (1988)

Sud and Walker (1992)

Sud-Molod (1988)



12.

13.

14,

15.

Soil Temperature
Parameterization

Soil Moisture
Initialization &
Parameterization

Vegetation Properties
Roughness and Biome

General Modification

Force Restore; 2-layers:
diurnal and seasonal

3-soil layers initializa-
tion with off-line SiB,
Liston and Sud (1992)

Surface Albedo
Analysis of veg. data
characteristics data

Several Improvements
in the physics package

Deardorff's (1987)

Sellers ¢t al., (1986)

Dorman and Sellers (1989)
ERBE data over Bare-land

Sud and Walker (1992)
(for a detailed discussion)

*  Personal
**HYV =

Communication

Harshvardhan



III. List of Quantities

This section describes the analyzed quantities and units used. The first mo-
mentum fields in Section VI mainly follow those of Schubert et al. (1990) except
for the following differences. The global maps for the 10-year averages primarily
include the 850 and 200 mb fields. But the streamfunction field and its eddy part
(deviation from the zonal mean) are shown only at the 200 mb level. The geopo-
tential height and the vertical p-velocity fields are shown at the 500 mb level. The
specific humidity fields are shown at the 850 mb level. The vertical cross sections
are based on the zonal averages on the pressure levels 1000, 925, 850, 700, 500, 400,
300, 250, 200, 150, and 100 mb. The following table shows the fields whose seasonal

and annual means have been plotted. The fields are shown in the sequence of the

plots. Negative values are shaded for the fields marked with *.

Seasonal and Annual Mean First Momentum Fields

Global Map

Title Field

U850 850 mb zonal wind

U200 200 mb zonal wind

V850 850 mb meridional wind
V200 200 mb meridional wind
T850 850 mb temperature

T200 200 mb temperature

SLP sea level pressure

2500 500 mb geopotential height
q850 850 mb specific humidity
w500 500 mb vertical p-velocity
Full 200 mb streamfunction
EDDY 200 mb eddy streamfunction
x850 850 mb velocity potential
x200 200 mb velocity potential

Contours

3ms™?
5m s™1x
2m s *
2m s
5°K
2°K
4 mbx
20 mx*

1gkg™?

3 x107%Pqa s 1%
10 x 108m? s~ 1«
5 x 108m? s~ 1x

1 x 105m? s 1

1 x 108m? s~ 1x

*

-1 %



Longitude-Height Cross Section

Title Freld Contours

U zonal wind 5m s

\Y meridional wind 0.5m s~ ¥

w vertical p-velocity 0.5 x1072Pq s71*
T temperature 10 °K

q specific humidity 1gkg™!

Seasonal Cycle

The seasonal cycle of the following quantities is based on the 10-year monthly
averages of zonal mean of each field.

Title Field Contours

U200 200 mb zonal wind 5m s

V200 200 mb meridional wind 3m s 1k

T200 200 mb temperature 3°K

U850 850 mb zonal wind 3m s«

V850 850 mb meridional wind 2m s 1

T850 850 mb temperature 5°K

Q850 950 mb specific humidity 1gkg™!?

w500 500 mb vertical p-velocity 2 x1072Pq s}
E-P evaporation - precipitation 1 mm day™!

Zonal Mean Anomalies

The zonal averages of the monthly mean deviation from the seasonal cycle is

shown from 1979 to 1988.

Tatle Field Contours

U200 200 mb zonal wind 2m s1x

V200 200 mb meridional wind 0.5m s 1%
T200 200 mb temperature 0.5 °K'x

T850 850 mb temperature 0.5 °K'x

Q850 850 mb specific humidity 0.3 g kg1
w500 500 mb vertical p-velocity 1 x1072%2Pa s 1%



Hydrology
Precipitation

The model-simulated total precipitation P, as well as the observed precipita-
tion, are shown for the seasonal and annual averages of 10 year mean fields. The
observed precipitation is a combination of raingauge measurement over land and
Microwave Sounding Unit (MSU) analysis over the ocean (Spencer, 1993). The
precipitation anomalies for the simulated and the observed are shown as deviations
from their seasonal cycles. The annual anomalies are yearly deviations from the 10-
year mean fields. The time series of the zonal mean precipitation for the simulated
and observation is shown for the total, anomaly with seasonal cycle (10-year cli-
matology subtracted), and anomaly with seasonal cycle removed (10-year seasonal

1

mean subtracted). These maps have contours with 1 mm day™! interval.

Evaporation

The 10-year mean seasonal and annual averages of simulated evaporation E

I contour interval. The

(and also monthly averages) are shown using 1 mm day~
seasonal and annual evaporation anomaly are shown with thick (thin) contours of
interval 1 (0.5) mm day~!. The time series of the zonal mean evaporation is shown
for the total, as well as anomaly with seasonal cycle (contour interval 0.5 mm day™?!),
and the anomaly without seasonal cycle (0.2 mm day™!). The time series of the
zonal mean P—E (precipitation minus evaporation) is shown for the total, anomaly
with seasonal cycle, and anomaly without seasonal cycle with contour intervals of

1 mm day~!.

Soil Moisture

The 10-year mean seasonal and annual mean soil moisture at the SiB model
layer-2 is shown with shading for regions having soil moisture fraction from 0.3 to
0.8. The seasonal and annual anomaly soil moisture are shown with contours at +
0.05, 0.1, 0.2, and 0.3.



Time Series of P, E, and Soil Moisture in 12 SiB Vegetation Region

These are the averaged quantities over the area of 12 different Simple Biosphere
(SiB) Model vegetation types (also called biomes). All curves with open circle or
rectangle are from AMIP run, and the curves with closed circle are either from
observation or from estimation. The upper two curves in the left panel are the soil
moisture at the SiB layer 2 (root zone) with scale on the left ordinate (fraction from
0 to 0.75). The estimated soil moisture in closed circle is taken from the Liston et al.
(1993a, b), where off-line SiB model is run, with the gridded raingauge precipitation
produced by J. Schemm (personal communication), following Mintz and Walker
(1993) procedure. The lower two curves in the left panel] are the evapotranspiration
with scale on the ordinate in the right panel from 0 to 10 mm day~!. The curves in
the right panel are the AMIP (open circle) and observed (closed circle) precipitation,

and they follow the scale from 0 to 10 mm day ™.

Monthly Mean Radiative Flux

The monthly mean net shortwave radiation into the earth-atmosphere system
and outgoing longwave radiation (OLR) out of the atmosphere are plotted for the
simulated radiative flux (AMIP, top panel), and for the ERBE observations (ERBE,
middle panel). The simulated radiative flux minus observed/analyzed radiative flux
(DIFF, bottom panel) are also shown. The contour interval for these fields is 20
W m™2.

IV. Discussion

A. First Momentum Fields

a. Zonal Winds

The 850 mb zonal winds show a realistic meridional structure, i.e., easterlies in
the tropics, westerlies in the midlatitudes, and easterlies again in the polar regions.
The winds also show a decent annual cycle. For example, in the summer season,
the easterlies change to westerlies over tropical Africa and India. As expected, they

are stronger in the local winters and weaker in local summers. As compared to the



European Center for Medium Range Weather Forecast (ECMWF) analysis (here-
after analysis/observations), the simulated winds are much stronger. Particularly at
the polar latitudes, the simulated winds become quite unrealistic and large, which
suggests model deficiency. Also, wintertime north Atlantic storm track winds are
stronger than the observed. At the 200 mb level, the zonal winds, although some-
what stronger than the observed, better agree with the analysis except for the polar
regions. Some notable deficiencies are: the simulated easterlies in the tropics are
not as widely spread as those in the observationa; moreover, winds in the polar re-
gions are too strong. These effects can also be identified in the seasonal and annual

mean fields.

b. Meridional Winds

The 850 mb meridional winds have a reasonable distribution except for the
excessive magnitudes in the polar regions. Over North America, the winds are
equatorwards while over the north Pacific and Atlantic regions, they are polewards;
this agrees well with observations. The wind magnitudes over South America,
Northern and Southern Africa and Eurasia are large in the seasonal means but
appear quite reasonable in the annual mean. The meridional winds at the 200 mb
level are somewhat stronger than observed, but better agree with the analysis than
they do at the 850 mb level except for the polar regions. Some notable deficiencies
are in the European regions, Highland regions of India, and China while both polar
regions have much stronger winds, which may well be related to inaccurate solutions

of the primitive equations in the viscinity of orography.

c. Temperature

As compared to observation, the 850 mb temperature distribution seems much
better than that of 200 mb level. In the latter case, particularly during winter and
‘spring, the temperature gradients in the meridional direction are much stronger
than observed, with the highest gradients in the polar regions. This is accompanied
by excessive cooling in the entire troposphere, which is strong in the polar regions.

The 200 mb temperature over the south (north) polar region is about 20 (10) K too



low, and this seems to be consistent throughout all the seasons, except that south
polar regions at upper levels are warm enough to be close to the observed during

summer and autumn. This is a model deficiency that needs to be addressed.

d. SLP and 500 mb Height

The SLP and the zonal departure of 500 mb height fields show some strong
gradients in the poleward direction. They appear quite reasonable in the southern
high latitude regions in both seasonal. as well as annual, variations, but the gradients
are much too strong in the northern high latitudes. Often SLP gradients translate
into the geopotential height gradients for which only the eddy part has been shown.
Lower SLPs, simulated over the western Antarctic, produce convergence, as opposed
to divergence, in the region leading to spurious precipitation. This weakness did

not exist in the 9-layer model and needs further investigation.

e. Specific Humidity at 850 mb and 500 mb w

The 850 mb specific humidities are well simulated. The model is somewhat drier
in the tropics because the 850 mb level is above the cloud base level where sinking
dries it. A new downdraft scheme (Sud and Walker, 1993) is implemented into the
model, which is likely to improve this condition. The 500 mb w (vertical p-velocity)
fields appear to be quite reasonable. Strong values in the vicinity of orographic
gradients are related to rising/sinking components of the strong motion fields. The
large-scale vertical p-velocity structure appears quite reasonable as compared to
ECMWTF analysis. However, rising motion over the western and central tropical

Pacific is up to four times stronger than the analysis.

f. Streamfunction at 200 mb

The 200 mb streamfunction depicts the rotational part of wind structure of the
model. The simulated winds correspond well with the ECMWF analysis. Strong
gradients over the south pole region point to the pole problems. The analyzed winds
in the region have a smooth zonal pattern. The winds over the midlatitudes seem

quite reasonable and agree well with the analysis, except that they are a bit too



strong, particularly in their seasonal depictions.

g. Velocity Potentials at 200 and 850 mb

The 200 and 850 mb velocity potentials depict the planetary scale divergent
motion fields. The convergence towards the center of the maximum velocity po-
tential and divergence away from the minimum value agree well with the ECMWF
analysis. The velocity potential gradients at 850 mb are stronger than those in the
ECMWF analysis, which is consistent with stronger simulated winds at the 850 mb
level. Otherwise, the location of the centers of convergence and divergence appear

reasonable.

h. Zonal Mean U, V, and w

The zonal mean U-winds are somewhat weaker in the tropics. Although the
variation of the annual cycle is well simulated (with the strongest winds in the
summer ), the middle tropospheric winds do not become easterly in the tropics. The
subtropical jets seem to have resonable strength: a closed (open) jet of annual mean
strength of 25 (35) m s~! at the 200 mb level in the northern (southern) latitudes
is quite reasonable as compared to ECMWF analysis. The V-wind simulation also
appears quite reasonable; whereas, the vertical motion fields, w’s, are somewhat
stronger. In the seasonal depictions, the intra-annual variation of these fields seems
to be quite reasonable. The extreme vertical motion over Antarctica is again the
manifestation of the orographic influence on the strong simulated wind. Another
point to be noted is that in the midlatitude, the upward motion is not strong enough

to be comparable to the observation.

i. Zonal Mean Temperature and Humidity

The temperature fields show upper level cooling everywhere and some signif-
icant cooling at the high latitudes. This problem has already been pointed out
earlier. In fact, the problem of cooling at the poles has been plaguing the GLA
GCM for quite some time, and it has still to be solved. The humidity fields cannot

be compared because the analyses are model dependant; therefore, we reckon that
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they cannot be verified and are shown here for completeness.

). Zonal Mean Annual Cycle for U, V, and T at 200 and 850 mb

The seasonal cycle of U and V at 200 mb level agrees well with the observations.
The T-field shows closed highs at 30° N - 60° N latitudes. This is not seen in the
ECMWF analysis. Since it is the middle of summer for the northern latitudes,
we believe that such a depiction is not unreasonable. At the 850 mb level, we
get stronger winds and stronger wind gradients. This is reflected in the seasonal
structure of U-winds; for example, the strong subtropical westerlies from May to
October are not seen in the observation. The pole problems reflect severely in
the V-wind errors at high latitudes. The annual cycle of wind structure simulated
by the model is much stronger than that in the ECMWF analysis. However, the
improvement in the analysis in the later years (1984 - 1987) helps to close the large

gap between our simulations and the analysis.

k. Annual Cycle for Zonal-Mean Humidity-850 mb, w-500 mb, and E—P

The simulated humidities appear reasonable. In this case, too, the recent im-
provement in the ECMWF analysis brings the analyzed fields closer to our simu-
lations. This suggests that the discrepancies between the simulated and analyzed
fields are not entirely caused by simulation errors. The large-scale seasonal variation
of the vertical winds at 500 mb is quite reasonable, even if the strong upward motion
from May to October is not seen in the observation. The 500 mb vertical winds
and moisture divergence correspond well to each other. Rising motion is consistent

with increased precipitation.

1. Fluctuations in U, V, T-200 mb and T-850 mb, Q-850 mb and w-500 mb

At high latitudes, 200 mb winds have higher magnitude and lower frequencies,
as compared to the tropics. The period appears to be about 90 days at mid-
high latitudes, with only an annual fluctuation. Correspondingly, T-200 mb has
much stronger fluctuations, as compared to T-850 mb. As expected, the strongest

fluctuations occur in the polar regions. The humidities over the southern polar caps
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are naturally quite low, while over the southern oceans, they are quite uniform:;
therefore, the fluctuations appear over the northern high latitude regions only. In

the tropics, low (high) humidities can be seen in 1987 (1988).

B. Hydrology

a. Total Precipitation Climatology

The seasonal vis-a-vis observed precipitation climatologies show that the model
does a good job of simulating the rainfall patterns. The fields are much more
realistic over the oceans, as compared to land; however, the simulation is poor,
particularly in the vicinity of orography. High rainfall over Colombia in South
America 1s spurious; the Indian monsoon is also somewhat displaced because of
sharp Himalayan orography; the precipitation over the South Pole, which the 9-
layer model did not have, has appeared as a result of strong convergence and is
a source of some concern. It is related to the polar problems where extremely
strong vertical winds dominate over Antartica. In the observations, some mismatch
between the land and ocean rainfall is the result of blending satellite inferred rainfall
over the oceans with raingauge observations. The differences show that the model-
simulated precipitation are systematically less, as compared to satellite data in
the Intertropical Convergence Zone (ITCZ) and South Pacific Convergence Zone
(SPCZ) regions, whereas, they are better correlated with observations over land.
Systematic errors over the Sahara region may be related to 4% — 8% lower albedo
of deserts, as compared to ERBE products. Model tends to rain more over coastal
North America but less over coastal West Africa. High simulated rainfall over the
tropics in Columbia seems to be a problem. The monthly precipitation climatology
in the next four figures can be compared with the observations given in the following
figures. Problems with precipitation structure over Amazonia, monsoonal northern
India, North America, and Africa can be noted. Strong precipitation from May

through December over Greenland deserves attention.

b. Simulated and Observed Precipitation Anomalies

The seasonal and annual rainfall anomalies show that the model has some

12



large systematic errors, but it capture salient features of Sahelian droughts for
1982 and 1983; influence of El Nifio sea surface temperature (SST) anomaly on
the tropical Pacific for 1983 and its reversal in 1984, which is accompanied by
increased rainfall over western tropical Africa; the reduced (increased) rainfall over
the tropical Pacific, in 1985 (1986) is also well captured. By 1987 another El
Nino began to affect tropical Pacific and the model simulates it reasonably. It
is associated with droughts over India and North Africa and Amazonia, and the
model captures it. However, the skill in the midlatitudes is not good enough, as
can be inferred from the simulated and the observed fields. We believe that this is
related to the unrealistically strong winds, which affect the orientation of stationary
waves in the midlatitudes. As we have seen before, the zonal winds in the 850 mb
are comparable to the observed values, while the vertical winds are weaker than
the observation. We assume that this is related to insufficient baroclinic activity
in the storm track. The coarse resolution of our model could also yield weaker-
than-observed transient activity over storm track region. In turn, the midlatitude
baroclinic system itself might not be efficient enough to create sufficient meridional
and vertical energy transfer, and the unrealistically strong upper layer winds could

be a part of this deficient dynamic system.

Some large-scale features of the rainfall anomaly are well captured by the sim-
ulation. By 1988 the warm El Nifio SST event was replaced by the cold La Nifia
event. The rainfall over the tropical Pacific was reduced significantly. There were
also changes in India, Indonesia, Tropical North Africa and North and South Amer-

ica.

c. Zonal-Mean Simulated Vis-a-Vis Observed Precipitation

The zonal mean precipitation shows north-south excursions in association with
the change of solar declination. The tropical rainfall appears a little too strong;
whereas, high latitude rainfall is weak; see, for example, the rainfall in the region
of roaring 40° S — 60° S. The zonal mean rainfall anomaly with seasonal cycle
has a stronger structure in the model, as compared to observation. The observed

precipitation anomaly has strong interannual variability between 30° N to 60° N,
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but it is not apparent in the model. In the tropics, however, the simulated seasonal
cycle is stronger than the observed for the entire period. The reduced rainfall in 1987
is not picked up by the model, even though the resemblence of patterns or lack of it
in the zonal mean precipitation may be fortutious. The rainfall anomaly patterns
in the Southern Hemisphere do not convey much, except for some correlation at a
few places. The patterns with 10-year monthly mean subtracted do not show much
resemblence with observations, but in 1983 and 1986 the northward propagation of

the negative anomalies in the tropics shows some correspondence to the observation.

d. Surface Evaporation Climatology

The simulated seasonal vis-a-vis observed seasonal and annual evaporation cli-
matologies that are consistent with the precipitation fields are included for com-
pleteness. There are no observations or analysis of observations for this field. A
correspondence between evaporation and SST anomalies can be expected over the
oceanic regions. This is evident for the tropical Pacific El Nifio/La Nifia years:
1982/1983 and 1987/1988. The zonal mean evaporation shows a stronger seasonal
signal at higher latitudes when we examine the patterns after subtracting the 10-year
mean, which is to be expected. The summer and winter patterns in the Northern
Hemisphere show how an evaporation anomaly seasaw pattern develops between
mid and high latitudes. In the annual cycle, higher (lower) evaporation in winter
over the oceans (land) in midlatitudes and higher (lower) evaporation over land
(ocean) occurs in summer in the high latitudes. The pattern results from land

ocean distribution in the northern latitudes.

e. Annual Cycle for Zonal-Mean P—E

The patterns appear quite reasonable. The net drying can only occur over the
oceans, because precipitation has to exceeed evaporation over land to compensate
for the runoff. The plots are included for completeness, because currently there is
no data to compare. We hope future observations/analysis of observations can help

us verify these.

14



f. Soil-Moisture Fraction

The simulated soil-moisture fractions climatology produced by the model for
the root zone region appears to be reasonable. Although deserts are dry and pre-
cipitating regions are moist, there are some differences between the estimated and
model simulated soil moistures. Some of these differences, such as the soil-moisture
patterns over northern India, Amazonia, tropical Africa, and north Africa, can be
related to the simulated rainfall deficiencies. The model produces soil moistures with
an assumption that all snow melt gets into the soil, which produces the discrepancy
over Greenland, but that is really inconsequential. In the evolving soil-moisture
anomaly, one notices drying and moistening in response to initial adjustment that
lasts up to 2-years. After a couple of years, the soil-moisture adjustment is re-
duced to simple interannual variability, as well as response to prescribed boundary
forcings. The 10-year cycle for soil moisture and evaporation with the raingauge
rainfall verification for different SiB biome regions shows the biospheric component
of the model’s performance. The soil moisture over the tropical forest is always
below the estimated value and shows stronger seasonal variation. Also, there is
some persistent decrease of the soil moisture over the years in the biome type-4
region (needleleaf evergreen trees). Other differences can be found in biome type-
5 (needleleaf deciduous trees), biome type-6 (Savannah), and biome type-8 and 9
(broadleaf deciduous shrubs).

g. Radiation

The monthly mean net shortwave radiation entering the earth-atmosphere sys-
tem (incoming solar radiation minus reflected solar radiation by the surface and
atmosphere), as well as monthly mean OLR averaged from 1985 to 1988. is com-
pared with the data generated by ERBE observation. The ERBE data is read from
the CD-ROM made by NASA Climate Data System Staff (Olsen and Warnock.
1992). In general, the net shortwave radiation shows good agreement with ERBE
data. There are, however, some systematic errors over oceans off the coast of Chile
in South America, the west coast of the United States, and the west coast of South-

ern Africa. These areas are believed to have low level stratus clouds, which are
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not well simulated by the model. These clouds reflect a significant amount of the
solar radiation. We also notice that the magnitude of errors becomes larger in the
Summer Hemisphere when the incoming solar radiation is stronger. The maximum
error in these areas does reach up to 100 W m™2. Errors can also be noted over
the high orographic regions, especially Himalayas. There are significant errors near
the snow boundary regions over Antarctica and the North Pole. OLR simulated by
the model is also in good agreement with the ERBE data, except over a few regions
such as Indonesia and Himalaya. Over the Sahara region, the simulated OLR is
less than that of the ERBE data. These differences are being analyzed to help us

improve our cloud and land-surface albedo parameterizations.
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B. ANNUAL AVERAGES
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C. SEASONAL CYCLE
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D. ZONAL MEAN ANOMALIES
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VII. HYDROLOGY

A. PRECIPITATION
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"Total Precipitation (mm/day)
10 Year Mean (1979-88)

A set of simulated precipitation fields. Panel labels show seasonal means: De-
cember, January, February (DJF), March, April, May (MAM), June, July, Au-
gust (JJA), September, October, November (SON), and annual mean (ALL).
Thick (thin) contours are 2, 4, 8, 12, and 16 (1, 3, 6, 10, and 14) mm/day.
Bar on the right shows range of the shaded regions. Area weighted global
mean values are DJF: 2.89, MAM: 3.03, JJA: 3.45, SON: 2.94, and ALL: 3.08,

respectively. Tropics are relatively well simulated. Orographically induced

precipitation shows deficiencies. Excessive rainfall appears over Antarctica.
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Total Precipitation (mm/day)
10 Year Mean (1979-88)
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Observed Precipitation (mm/day)
10 Year Mean (1979-88)

A set of observed precipitation fields. Panel labels show seasonal means: De-
cember, January, February (DJF), March, April, May (MAM), June, July, Au-
gust (JJA), September, October, November (SON), and annual mean (ALL).
Raingauge data over land and MSU analysis over ocean (Spencer,1993) are
merged together. Thick(thin) contours are 2, 4, 8, 12, and 16 (1, 3, 6, 10,
and 14) mm/day. Bar on the right shows range of the shaded regions. Area
weighted global mean values are DJF: 3.13, MAM: 3.12, JJA: 3.60, SON: 3.20,
and ALL: 3.26, respectively.
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Precipitation AMIP-MSU (mm/day)
10 Year Mean (1979-88)

Simulated minus observed differences for precipitation fields. Panel labels
show seasonal means: December, January, February (DJF), March, April, May
(MAM), June, July, August (JJA), September, October, November (SON),
and annual mean (ALL). Thick (thin) contours are & 4, 8, and 12... (2, 6, and

10 ...) mm/day. The differences are not necessarily caused by the simulation

errors because of the well known biases in the analyzed precipitation.
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10 Year Mean (1979-88)

CONTOURS 2 4 8 12 24 (thick), 1 3 6 10 18 (thin)
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Total Precipitation (mm/day)
10 Year Mean (1979-88)
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Observed Precipitation (mm/day)
10 Year Mean (1979-88)

CONTOURS 2 4 8 12 24 (thick), 1 3 6 10 18 (thin)
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Observed Precipitation (mm/day)
10 Year Mean (1979-88)

CONTOURS 2 4 8 12 24 (thick), 1 3 6 10 18 (thin)
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Anomaly Precipitation (mm/day)
Simulation Year 1 (1979)

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are & 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON /1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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‘Anomaly Precipitation (mm/day)
‘Simulation Year 1 (1979)

Contours labeled ~12 -8 —4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simulation Year 2 (1980)

Contours labeled -12 -8 —4 -2 2 4 8 12, deficit shoded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifa periods. For example, MAM and SON/1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
Simulation Year 2 (1980)

Contours lobeled —-12 -8 —4 -2 2 4 8 12, doficitr shaded
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-Anomaly Precipitation (mm/day)
Simulation Year 3 (1981)

Contours laobeied ~12 -8 ~4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON /1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
Simulation Year 3 (1981)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simulation Year 4 (1982)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON/1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).




Anomaly Precipitation (mm/day)
Simulation Year 4 (1982)

Contours labeled —12 -8 -4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simulation Year 5 (1983)

Contours labeled —12 -8 —4 -2 2 4 B 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON/1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
‘Simuliation Year 5 (1983)

Contours iobeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simulation Year 6 (1984)

Contours labeled —12 -8 —4 -2 2 4 B 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON /1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).




Anomaly Precipitation (mm/day)
Simulation Year 6 (1984)

Contours lobeled —12 ~8 —4 -2 2 4 8 12, deficit shaded
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-Anomaly Precipitation (mm/day)
Simulation Year 7 (1985)

Contours labeied —-12 —8 —4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nino/La Nina periods. For example, MAM and SON/1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
Simulation Year 7 (1985)

Contours labeled -12 —8 —4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simuiation Year 8 (1986)

Contours lobeled —12 —8 —4 -2 2 4 B 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifa periods. For example, MAM and SON /1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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“Anomaly Precipitation (mm/day)
Simulation Year 8 (1986)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Anomaly Precipitation (mm/day)
Simulation Year 9 (1987)

Contours lgbeied ~12 —8 —4 -2 2 4 B 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifia periods. For example, MAM and SON /1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
Simulation Year 9 (1987)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shoded
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Anomaly Precipitation (mm/day)
Simulation Year 10 (1988)

Contours lobeled —12 —8 4 -2 2 4 B 12, deficit shoded

Deviations from the seasonal and annual averages (10 year means) for the
simulated precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Seasonal
anomalies over tropical Pacific are relatively well simulated especially during
El Nifio/La Nifa periods. For example, MAM and SON/1982 versus 1983 and
JJA 1987 versus 1988; however the anomalies for DJF 1982 versus 1983 are

weaker than the observed (see next set of figures).
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Anomaly Precipitation (mm/day)
Simulation Year 10 (1988)

Contours labeled —12 —8 —4 -2 2 4 8 12, deficit shoded
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Observed Anomoly Rainfall (mm/day)
Year 1 (1979)

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are * 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.
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Observed Anomaly Rainfall (mm/day)
Year 1 (1979)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 2 (1980)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shoded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 2 (1980)

Contours laobeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 3 (1981)

Contours lobeled —12 —B -4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation flelds. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W
is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 3 (1981)

Contours lobeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 4 (1982)

Contours lobeled —-12 -8 -4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 4 (1982)

Contours iabeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 5 (1983)

Contours laobeled —12 -8 ~4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 5 (1983)

Contours labsled —12 -8 ~4 -2 2 4 8 12, deficit ghaded




Observed Anomaly Rainfall (mm/day)
Year 6 (1984)

Contours lobeled —12 -8 —4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £+ 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W
is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 6 (1984)

Contours labeled —12 -8 —4 -2 2 4 B 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 7 (1985)

Contours locbaled —12 ~8 —4 =2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W
is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.
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Observed Anomaly Rainfall (mm/day)
Year 7 (1985)

Contours lobeled ~12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 8 (1986)

Contours lobeled —12 -8 ~4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W
is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.
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Observed Anomaly Rainfall (mm/day)
Year 8 (1986)

Contours labeled —12 -B —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 9 (1987)

Contours labeled —12 -8 -4 -2 2 4 8 12, deficit shaded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 9 (1987)

Contours labeled —12 -8 —4 -2 2 4 8 12, deficit shaded
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Observed Anomaly Rainfall (mm/day)
Year 10 (1988)

Contours lobeled —12 -8 —~4 -2 2 4 8 12, deficit shoded

Deviations from the seasonal and annual averages (10 year means) for the
observed precipitation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 2, 4, 8, and 12 (1, 3, 6, and 10) mm/day. Maximum
positive anomaly in DJF and MAM, 1983 over tropical Pacific around 130°W

is followed by maximum negative anomaly in DJF and MAM, 1984 over central

tropical Pacific as part of the El Nifio episode.




Observed Anomaly Rainfall (mm/day)
Year 10 (1988)

Contours iabeled —12 -8 —4 -2 2 4 8 12, deficit shoded
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B. EVAPORATION

141



Evaporation (mm/da
10 Year Mean (1979-88

A set of simulated evaporation fields. Panel labels show seasonal means: De-
cember, January, February (DJF), March, April, May (MAM), June, July, Au-
gust (JJA), September, October, November (SON), and annual mean (ALL).

Contour interval is 1 mm/day. Bar on the right shows range of the shaded

regions. Area weighted global mean values are DJF: 2.77. MAM: 2.84, JJA: "
3.11, SON: 2.79, and ALL: 2.88, respectively.
1




Evaporation (mm/day)
10 Year Mean (1979—88{

shaded 1 2 3 4 6, contour interval 1
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Evaporation (mm/da
10 Year Mean (1979-88

shaded 1 2 3 4 6, contour interval 1
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Evaporation (mm/da
10 Year Mean (1979-88

shaded 1 2 3 4 6, contour interval L
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Evaporation (mm/da
10 Year Mean (1979-88

shoded 1 2 3 4 8, contour interval 1




Evaporation (mm/da
10 Year Mean (1979-88

shoded 1 2 3 4 6, contour interval L" .
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Anomaly Evaporation (mm/day)
Simulation Year 1 (1979)

Deviations from the seasonal and annual averages (10 year means) for the

simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA /1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean. '
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Anomaly Evaporation (mm/day
Simulation Year 1 (1979)

Contour interval 0.5 with negative valuss shaded
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Anomaly Evaporation (mm/day)
Simulation Year 2 (1980)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA /1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 2 (1980)

Contour interve! 0.5 with negative values shaded
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30S £

60S

Anomaly Evaporation (mm/day)
Simulation Year 3 (1981)

Contour intervol 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the

simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA/1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 3 (1981)




Anomaly Evaporation (mm/day)
Simulation Year 4 (1982)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the

simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM). June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA/1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 4 (1982)

Contour interval 0.5 with negative vaiues shaded
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Anomaly Evaporation (mm/day)
Simulation Year 5 (1983)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated evaporation fields. Panel labels show seasonal means: December.
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA/1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 5 (1983)

Contour interval 0.5 with negative volues shaded




Anomaly Evaporation (mm/day)
Simulation Year 6 (1984)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the
simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nino response can
be seen in JJA /1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 6 (1984)

Contour interval 0.5 with negative values shaded
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Anomaly Evaporation (mm/day)
Simulation Year 7 (1985)

Contour interval 0.5 with negative volues shoded

Deviations from the seasonal and annual averages (10 year means) for the
simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA /1987 versus 1988 and MAM /1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 7 (1985)

Contour interval 0.5 with negative values shaded
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Anomaly Evaporation (mm/day)
Simulation Year 8 (1986)

Contour interval 0.5 with negative values shoded

'Deviations from the seasonal and annual averages (10 year means) for the
simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA /1987 versus 1988 and MAM /1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 8 (1986)

Contour interval 0.5 with nesgative volues shaded




Anomaly Evaporation (mm/day)
Simulation Year 9 (1987)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the

simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are + 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA/1987 versus 1988 and MAM /1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 9 (1987)

Contour interval 0.5 with negative volues shaded




Anomaly Evaporation (mm/day)
Simulation Year 10 (1988)

Contour interval 0.5 with negative values shaded

Deviations from the seasonal and annual averages (10 year means) for the

simulated evaporation fields. Panel labels show seasonal means: December,
January, February (DJF), March, April, May (MAM), June, July, August
(JJA), September, October, November (SON), and annual mean (ALL). Thick
(thin) contours are £+ 1, 2 (0.5, 1.5, and 2.5) mm/day. El Nifio response can
be seen in JJA/1987 versus 1988 and MAM/1984 versus 1985 over most of
the Pacific Ocean.
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Anomaly Evaporation (mm/day)
Simulation Year 10 (1988)

Contour interval 0.5 with negative values shaded
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Zonal Mean Evaporation (mm/day)

10 year monthly mean subtracted
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C. TIME SERIES P-E
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Zonal Mean P-E (mm/day)

Total
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Zonal Mean P-E (mm/day)

10 year annual mean subtracted
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D. SOIL MOISTURE
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Soil Wetness in Layer 2
10 Year Mean (1979-88)
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Estimated Soil Wetness L2
10 Year Mean (1979-88)
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Estimated Soil Wetness L2
10 Year Mean (1979-88)
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Anomaly Soil Moisture
Simulation Year 1 (1979)

Contours —.3 —.2 —.1 —-.05 .05 .3 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 1 (1979)

Contours —.3 —.2 ~.1 =05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 2 (1980)

Contours —.3 —.2 —.1 ~.05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 2 (1980)

Contours —.3 -.2 —.1 —.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 3 (1981)

Contours —=.3 —.2 ~.1 —.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 3 (1981)

Contours —.3 -.2 —.1 -.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 4 (1982)

Contours -.3 -2 —.1 —.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 4 (1982)

Contours —.3 —.2 —. 1 —.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 5 (1983)

Contours —.3 —.2 -.1 —~.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 5 (1983)

Contours —.3 -.2 —.1 —.05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 6 (1984)

Contours -.3 —.2 —.1 —.05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 6 (1984)

Contours —.3 -.2 —.1 —.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 7 (1985)

Contours —=.3 ~.2 —.1 —-.05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 7 (1985)

Contours ~.3 ~.2 ~.1 -.05 .05 .1 .2 .3 deficit daoshed
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Anomaly Soil Moisture
Simulation Year 8 (1986)

Contours -.3 —.2 —.1 -.05 .05 .1 .2 .3 deficit doshed
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Anomaly Soil Moisture
Simulation Year 8 (1986)

Contours —.3 -.2 ~.1 ~.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 9 (1987)

Contours ~.3 -.2 —.1 —-.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 9 (1987)

Contours —.3 —.2 —.1 —-.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 10 (1988)

Contours ~.3 ~.2 -.1 —-.05 .05 .1 .2 .3 deficit dashed
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Anomaly Soil Moisture
Simulation Year 10 (1988)

Contours —.3 ~.2 —.1 ~.05 .05 .1 .2 .3 deficit daoshed
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VIII. RADIATION

A. NET SHORTWAVE RADIATION
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NETSWTOA/JAN(85-88) (W/m*%2)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20
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NETSWTOA/FEB(85—88) (W/m**Z)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20
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NETSWTOA/MAR(85-88) (W/m#*x%2)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour intervaol 20
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NETSWTOA/APR(85—88) (W/mxx2)
4 Year Mean (1985-88)

shaded 60 180 260 360, contour interval 20
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NETSWTOA/MAY (85-88) (W/m=*%2)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20
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NETSWTOA/JUN(85-88) (W/m**Z)
4 Year Mean (1985-88)

shoded 680 160 260 360, contour interval 20
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NETSWTOA/JUL (85-88) (W/mx%2)
4 Year Mean (1985-88)

shoded 60 160 260 360, contour interval 20
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4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20

NETSWTOA/AUG(85-88) (W/m**2)
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NETSWTOA/SEP(85—88) (W/m**Z)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20
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NETSWTOA/OCT(BS—BB) (W/m*x2)
4 Year Mean (1985-88)

shaded 80 180 260 3680, contour interval 20
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NETSWTOA/NOV(85-88) (W/mx%2)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20




NETSWTOA/DEC(BS—BB) (W/m**Z)
4 Year Mean (1985-88)

shaded 60 160 260 360, contour interval 20
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OLR/JAN(85-88) (W/m*x2)
4 Year Mean (1985-88)

140 180 220 260, contour interval 20
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OLR/FEB(BS—BS) (W/m**Z)
4 Year Mean (1985-88)

shaded 140 180 220 260, contour interval 20
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OLR/MAR(85-88) (W/m**2)
4 Year Mean (1985-88)

shoded 140 180 220 260, contour interval 20




OLR/APR(85—88) (WVm**Z)
4 Year Mean (1985-88)

shoded 140 180 220 260, contour intervai 20
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4 Year Mean (1985-88)

shoded 140 180 220 260, contour interval 20
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OLR/JUN(85—88) (W/m*x2)
4 Year Mean (1985-88)

shaded 140 180 220 280, contour interval 20
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4 Year Mean (1985-88)

shaded 140 180 220 260, contour interval 20
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OLR/SEP(85-88) (W/m#*%2)
4 Year Mean (1985-88)

shad 140 180 220 260, contour interval 20




OLR/OCT(85—88) (W/m**Z)
4 Year Mean (1985-88)

shaded 140 180 220 260, contour interval 20
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4 Year Mean (1985-88)

shaded 140 180 220 260, contour interval 20
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